Review Article

Managing Technology: Issues and Options

Alok Kumar Singh*
Manager, Tata Power Delhi Distribution, New Delhi.

Abstract

Technology, economy and society need to be a tool of renewal or change of existing products, procedures or methods. These changes emerging from being manifested through innovation means that technology is not only innovative, but also prepares a way to further promote innovation. The Bonding Technique raises a special challenge for managers between technology and innovation: the challenge of operating from uncontrolled variables to controlling the development of innovation. It requires some practical freedom to derive ideas of speed of creativity and creativity.

Keywords: Leadership, Competition, Murphy's Law, Technology, Economy.

Copyright©2017, Alok Kumar Singh. This is an open access article for the issue release and distributed under the NRJP Journals License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Value Technology The economy uses many scientific discoveries to create. Acceptance of the technology development market begins with the market expansion, the birth of displacement and the renewed version of the aging yield, the passage of existing technology or a new one, research and discovery, market access. Technology development plans, and next-stage manager skills(1).

Some challenging issues:

• What kind of technology - labor-intensive capital-intensive use?
• How can the conflict between the need to emphasize the need for hardcore control freedom in the use of resources and combined?
• How do you adopt the organization's direction of technology selection and implementation?
• Need a kind of capacity enhancement mechanism for the management of technical risks?

However, these problems cannot be fully solved, including the many complications of, for example, can introduce difficulties along the length of the effort. Therefore, the
technical consequences of control and consideration of reliability issues vs. freedom are presented for proper review, and the main topic of discussion among seminar participants will be announced(2).

Managing Freedom vs. Control:
Innovation is the process of circumventing the necessary rigidity of control mechanisms that hinder the development of technological innovation. In contrast to a liberal environment in which innovation can be promoted, a prerequisite of the organization requires rigorous compliance with the control system in order to achieve the organization's goals. Administrators cannot achieve this by using the resources they have allocated for effective control through allocation and innovation(3).

Transactions with freedom and technology managers clearly show that the balance between control and innovation has had a serious dilemma. Coping with discontinuous situations and trends, to suppress the manager of the technology to plan the design well, bring a competitive advantage, need to go to the plan and carry out the use of effective control of innovation and resources on the organization side.

The challenge lies in the ability of experienced managers to control the control mechanism and how to perform only novice tasks in the desired performance planning arena(4).

Dr. Peer Ederer, a famous German scholar of innovation and growth, has outlined four sources of power that can be used independently or in tandem to build the control mechanism for dealing with the dilemma of managing the unforeseen and uncontrollable variables affecting the development of technology and innovation(5).

The four sources of power are:

1. The power of rules:
Achieving control with rules is a matter of defining the right set of rules and regulations. If the resources are subjected to the right rules and regulations, along with proper incentives and punishments for following or not following them, then resources will be controlled towards achieving the aspired target(6).

2. The power of leadership:
Achieving control with leadership is to make the resources follow a leader or a leading principle. In both cases, either the leader or the leading principle inspires or guides the deployment of resources towards achieving the aspired target(7).

3. The power of competition:
Achieving control through competition is a function of creating markets where competition allocates resources towards achieving the aspired target.

4. The power of complexity:
Achieving control through complexity is a function of creating a community of self-organization that can self-regulate itself towards achievement of the aspired target.

To prepare the right mix of the four sources to establish the appropriate mechanism to be given this signal can be given in this stage;
there are no more customized solutions in
the management of free-oriented variables
affecting development, without defining
technology and innovation. Overall control
system of standardized requirements.
Freedom versus Control Dilemma Hand
order and location managers' capabilities
dissolve efficiency and positive behavior
Defeating Murphy's Law in
Technological Operations:
Another troublesome problem is related to
the management of technology and
innovation and to prevent the operation of
Murphy's laws related. The law says,
"Things can go wrong, he can get wrong." In
the field of technology development that
application can have two consequences.
First, the technical application from the
perspective of "getting wrong" the most
expensive production process, and in the
worst case, the survival of the organization
on certain threats can result in unacceptable
negative consequences generally Bhopal gas
tragedy. Chernobyl nuclear power plant
accident, and Fukushima nuclear power
plant collapse indulges in result of Loss of
life, and environmental risk and established
A clear example of technical failure(9).

Most technologies that can create reliable
marginal rate organizations depend on "trial
and error" methods. When they faced the
market's strength and cost efficiency and
designing robust technology within the
constraints of stopping or optimizing
degradation of reliability of these
technologies. However, the "trial and error"
limits method, the fact that this option fails
to lie in the fact that the chance of falling
leaves a large percentage of losses, though.
Total rejection means that the failure of
Murphy's Law in the technology field is no
longer an option. There is also no need to
note that the recognition of critical
responsibilities for options of failure,
including the continuous monitoring and
upgrading process of technological
innovation is necessary, it should be
recognized in serious consequences(10).

Heads of technical applications should be
made in terms of preventing the occurrence
of the first fatal error of many successful
operations ahead of the evaluation of the
system to prevent bad. Now it is important
for organizations to operate a reliable and
fail-safe way to raise technical questions?
This question is addressed to learn from a
specific section of the organization known as
"High Trust Organization (HTO)".
Typical examples of such organizations are
nuclear power plants, aircraft carriers, air
traffic control and power grids(11).

Because of this excessive organization, these
organizations operate under very low
tolerance conditions for operational failure
of complex and dangerous technologies that
can be a disastrous consequence of
unexpected failures. There is a growing
interest in organizations that manage safety
and hazardous technology systems for many
reasons. First of all, modern society depends
on high performance to support the
technology of very high risk, which applies
the maintenance tolerance to the driver and
tight error tolerance. Second, It was
concerned about the reliability organization
Third, the threat of terrorism, especially after September 11, 200 liters went on growing interest and trust in critical infrastructure. These dangers have brought about an unexpected link between various technology systems, thereby increasing the emergence of new vulnerabilities. Finally, there has been an increase in the need for government to increase the number of service providers to third parties, consumer protection, and increased interest in environmental policy and high reliability and security. The technological aspect of this problem is to keep the scientist and Technocrats accounted, see here some of the organizational changes needed to reduce this problem(13).

First, there is an immediate solution and an error at a certain point, which should explode with the real-time management of organizational level of technical failure rather than the priority, should be acquired for a certain period of time. Second, the complexity of the organization is increasing, not surprisingly perfect in system design. Because of the ability to pay attention to handling because it is noticeable as technical complications for improvement, etc. to improve the design(14).

In other words, impromptu, the ability of correlation change, as a result of the change of favor, the bounce from the collapse back to the flexibility of the fatal event estimation is more important.

Prior to the flexibility analysis more emphasis on the brief account successfully successful operators have been surprised successfully, have more experience to make more efficient, the cause of functional exposure, it can be seen if the challenge of technical management credibility face it, Management, Schematic DI Ain provides strong support to anticipated risks, building improvisation, flexibility and analysis of the planned risks. Only the changes to build the ability to manage risk in the direction of the organization will be as trivial as the organization's buffer for best technical risk. Depending on the evaluation of points and the management of the safe use of new technologies, creating a systematic approach to risk can be used to ensure the best possible(15).

First, rather than investing in legislation, it requires clear regulatory policies and procedures, but the regulations can be implemented effectively. All national biosafety schemes require clear and consistent guidelines, peer-reviewed procedures and feedback and the use of food to support decision-making by qualified staff, for example in the case of GM crops, miracles are needed Strengthening the consumer capacity for the management of other technical risks of technical risks, creating a transition to potential effect information, and a strong network of assimilation and diffusion science research centers.

More relevance to this center for communication of new technologies, identification and imminent danger. Third, it can develop several technical options for
creating different solutions. The second method involves developing a flexible and responsive framework for building competencies for technical risk management.

In some cases, granting economic benefits in preventing the development of alternative technologies. However, these obstacles can be overcome through the provision of appropriate incentives and regulations for alternative choices. Fourth, we offer a more comprehensive risk assessment, and the benefits of new technologies are looking for expected loss weights than expected. This practice should be replaced with the current technology as well as the type of loss and new that must be replaced. The related technology option trade-offs should be based on the same assessment. In this context, attention can be given to poor communication networks and poor response mechanisms based on weak pairings for such assessments(16).

Lack of skilled workforce, lack of resources in developing countries, given these constraints, developing nations can generate the desired features that can manage discipline and moving technical risks before technology advances.

However, the overall replication of the overseas development model should be replicated rather than the global importance for technology risk management for additional importance, given the impact of the spread of technology risks from the border through trade and travel, the final last technology adaptation process should be Eclipse.

All the surge in other work techniques coming out of the world is bound to more and more continuously reflect the impact on other places. Therefore it stands for the management of technical risks in the interests of all nations(17).

Conclusion

In conclusion, it is possible for a variety of stakeholders of technology for human development to see its success in the development of technology, as well as multiple risk consequences as well as more opportunities to taste modern work. This weird phenomenon will extend to the regime and demand to prevent dangerous situations technology applications. Development and freedom undoubtedly take risks, play an important role in the development process and continue to play an important role in the development process.

This concept is only used in a way that creates confidence Freedom that is needed is designed to provide a courageous challenge to everyone to promote creativity, science and technology and human development, making it more enjoyable and respectful.

Reference

