Abstract

As the size of the company grows due to population growth, India cannot afford to continue its extensive agriculture. On the other hand, too much reliance on intensive cultivation can lead to excessive use of natural resources and environmental losses due to increased use of chemical fertilizers and pesticides. In addition, intensive farming is accompanied by a declining scale as soon as the optimal mix of production factors is hindered in the long run. Using the same long-term technology, farmers were able to increase input costs as the size of the country grew. Since it is not possible, the only solution is to introduce continuous change. By using advanced technology and production capabilities to improve agricultural skills, you can avoid factor imbalances that reduce crop yields. This not only increases production at low unit prices, but also lowers agricultural production prices. On the one hand, farmers can bring a high amount of total surplus to them, even if the market price of the product is low, and also the large size of the supply of agricultural products, even on poor consumers, the benefits of greater production quantities, Please purchase as.

Keywords: Environmental, Agricultural Growth Rate, Techno-Agriculture, Agricultural Machinery.

Introduction

India’s agriculture is likely to grow by about 2.5%, although the industry and services sectors can grow by the Prime Minister’s Economic Advisory Council (PMEAC) and the Central Statistical Organization (CSO) India has been growing at an annual average rate of 7% and decades of 2 to 5%, or less, in agricultural development in 2012-13.

After ignoring the difference between the two estimates (at 9% of production) The Hindu proportion of the growth of the Indian economy this year, due to several factors leading to different performance 1960 reasons, for example, the growing net area: ecological imbalance tends to stagnate adversely affect the quality of other regions of the country Dry land technology still does not signal success with spraying with Evolution technology (1).

Many of us have applied modern technology to agricultural in India However, this is a liar that is only a liar that needs a sharp and serious recurrence, a sharp reality of Indian
agriculture based on a few basic areas that are still valid in the context of determining the role of technology. In choosing the right technology for Indian agriculture, this will be a glance at some of the important issues that need to be addressed before drawing sustainable strategies for sustainable development(2).

**Intensive Vs Extensive Farming**

Developing countries such as India, which is almost useless formula, because it is a constant technological change that is a difficult task in the context of agriculture, whereas; knowledge-based complementary inputs Reduction of size of company among resources is linked. Population growth by similar technologies is a perennial issue that reduces agricultural production in light of the increasing demand due to the increasing number of consumers. Some studies at the international level suggest that the future of the holders is agriculture(3).

There are many problems in Asia due to many socio-economic, demographic, structural and institutional factors that negatively impact . These challenges include, among other things, the emergence of emergencies in which emergencies leave women and the elderly. Agricultural growth rate, sudden climate uncertainty and severe impact on food security and sustainable hats both are act in technical and institutional constraints. Small container sectors in most Asian countries, including India.

In general, the level of technology in developing countries can be as follows:

A) Internal evolution of education, research, training and experience, or
B) Foreign import from other developed countries

As proposed, the evolution process requires an absolutely mature, dynamic and competitive education, research and training network. Thus, the only remaining plausible application in developing countries, such as India, is the introduction of technology. After the development of the national test chain and the error, this point to tooth problems and the initial shock already burdened by the innovation and application of these countries, the technology was perfect and safe because they added the advantage that they came too late(4).

In addition, these countries do not need to repeat the evolutionary process because they have a wide range of technologies to choose from. Importing technology poses two problems.

I. Appropriate technology and
II. Regional adaptation to agriculture.

The functioning of technology depends on the state of the state of complementary research, because only one country can know the quality of imported knowledge or techniques and the cost of adaptation technology. On the other hand, the process of importing technology is accompanied by indigenous research and development(5).

Dichotomy, however, is an implemented techno-agriculture that agriculture with technology inbuilt is very popular in the developed countries of Australia, Canada,
USA and Russia, because of the huge capital allowance, the blessing of skilled labor, It does not matter whether you are introducing technology or developing your own. On the other hand, in India, small farmers cannot easily combine if they can afford it(6).

**The Role of Government**

It is striking that the private sector is currently the world’s leading R & D and pursuing financial, knowledge and manpower for technology innovation. Of the world's most developed nations, the private sector also has a greater role in farmer's level than in the realm, but more R & D and agricultural spending in agricultural R & D activities is almost financially feasible, and therefore its own initiatives and risks There is no government to manage their own behavior, success and failure just to be able to allocate enough funds for innovation, research and development activities in the field as well(7).

The development task, which does not have enough government spending for most of the developing world, is left to the private sector. Governments in some developing countries have now begun to build the need to provide greater investment in technological upgrading and interest in the fate of agriculture facilities essential to growth(8).

Research on technology status as a country, including Bangladesh, India, Korea, Thailand and Vietnam, indicates that the Government has made significant investments in R & D, extension, technology and infrastructure to achieve food self-sufficiency. They also provided practical subsidies for fertilizer, irrigation, and energy and credit to help farmers make the most of innovative forms. But India has chosen a deliberate agricultural strategy(9).

The Green Revolution of India is worthy of special mention to effectively control hunger, certain food shortages and food independence achieved by introducing agricultural technology. Within a very short period of 10 to 15 years, however, this method was abandoned twice because of the growing confidence of the government of the vehicle in the growth of Indian agriculture, because the method was airborne twice. As a result, the injection of these additional efforts was considered an overdose that could have an undesirable effect(10).

**Paradox of Unemployment, Employment and Employability**

Generally, this technology is interpreted as implementing machinery and agricultural meaning through the machine. There is always controversy in India. Supporting the mechanization of agriculture in India, it claims to lead to the promotion of agricultural productivity because machinery can only be carried out by energy, which can be re-used machines. This is a pervasive technology(11).

With all the - they cannot even improve productivity, they are not supported by advanced technology, to ensure high seeds, fertilizer and rich labor force, high growth in the agricultural sector. Combination can be used in the form of pesticide combination,
combined with tractor combined decomposition techniques in the form of irrigation and technical expertise (12).

In contrast, criticism of design agriculture is possible to stick to traditional agricultural skills because of the limitations that make up the majority of people engaged in agricultural activities and beyond the reasonable limits for small farmers, due to modern technology investment concerns. It requires relatively little capital. They also like this because unemployment is one of the country's most unclear problems. It's the only way to guess because it's the only technology that can limit the severity (13).

Modern technology suppliers have their own arguments that have contributed to the creation of indirect job creation opportunities. They argue that the use of machines increases. Agricultural work is produced by the production of the repair of equipment, which can be directed by the off-farm work offset by agricultural machinery, parts supply, fuel and lubricant etc (14).

Thus, marginal loss mechanization is the agricultural industry, commercial complex and 2 Tea and tertiary sector. The controversy is further reinforced when India's agricultural sector disguises itself as a source of unemployment and labor shortages, particularly when it comes to sowing rice and wheat harvest indicators for temporary changes in the village to income earning cities (15). Then the use of machines is essential to compensate for the labor shortage.

Agriculture in India implements a complex structure that suffers from technological dualism in which both feathers and farmed agriculture exist. Side by side technology delays are the result of this technology dualism, which is detrimental to economic growth. In India, the existence of dualism emphasized the structural and technical unemployment problems in the agricultural sector (16).

Even a small margin is due directly to the large amount of farmers in agriculture in India, so they are not associated with real farmers; they are the sole legitimate owners of enterprises. The company is managed by rural residents who do not have some land at the farmers' premises by physical sites and existing norms remain permanently at the time of the owner or the agreement between them and the products to be shared or monetary values are harvested (17).

These landowners visit the farm once or twice a year and rarely choose to farm. In fact, most expect to feel a sense of pride that this business inherited legacy through their ancestors by maintaining their ancestry, and this attitude remains uneconomic due to the attitude of their indifference to their development. This is due to the attitude neutrality of these holders, as revenues from it remain almost unprofitable due to the implicit burden of managing the system due to remote control technology, as farms remain unemployed because it does not add significantly to the income of the container. Meanwhile, tillers use land for agriculture that can not be practically applied by modern technology for their financial
inability to follow their poverty and social privileges in general. Thus, agriculture in India is a classic example of a mix of human and technical unemployment(18).

The use of agricultural technology can motivate youth rural people especially to learn the skills of working demo of the machine. Therefore, they can be trained to process these machines informally. This can facilitate technology for minor technical needs such as driving, minor repairs and convenient maintenance of such machines. These technologies can effectively monitor trends in creating rural employment opportunities and migrating to other regions(19).

**Compartmentalized Application of Technology in India**

In India, as mentioned earlier, modern technology users can not be inherently owners and owners can not be inherently their users. It is possible to see more modern selected technology owned by a businessman who uses a large farmer or technology itself, which is absolutely available on his farm, but does not use another person on another loan(20).

In many cases the farmers have carried out very costly exercises of agricultural machinery in other land importing rental land and have returned equipment after the course of operation for their owners essentially without the farmers(21). The owner of such machines takes advantage of the ability to pay very high prices for their services, which is very random, sometimes unreliable. In this case, farmers in three possibilities: use their labor and his family to farm, hire labor for drilling or harvesting and expensive equipment for operations such as excessively high costs. In the first two major constraints of the labor shortage of farmers, the third option is generally not particularly appropriate for companies where the prevalence of major is small, but among the poor farmers, they are the latest and higher cost Avoid using the machine(22).

However, farmers often use voluntary access to debt traps by making use of such equipment by banks' credit by holding stocks. This has caused many farm murders in many parts of India. Thus, in the context of Indian agriculture, the technology can conclude that dualism monitors the advantages of modern machinery on non-agricultural and ironically it promotes technological backwardness in areas that cover most of the farmland in the country(23).

**A Suitable Alternative for Agriculture in India**

Recently, in Gujarat, strategies for using the latest technologies focusing on public-private cooperation in agriculture have been put into practical use. A large number of enterprising farmers are willing to invest in them to encourage drip irrigation, seeds and fertilizers, which are greatly encouraged by government plans to secure subsidized irrigation and other equipment. Gujarat farmers are also fighting with multinational corporations to grow potatoes, some non-stock crops and a great demand in the field of food processing. However, this
alternative requires a large number of companies to continue applying such technology. According to the Chinese model, co-operative agriculture or cultivation agriculture is universally accepted as a technology option before intention requires extensive research, but the size of the company can be increased by using this technology and increasing the number of socio-political aspect(24).

However, these techniques can be applied to patches and parts, even if the government is interested and actively promotes publicity because it can cause legal nuances. Multinational corporations will be attracted to the management of agriculture and operations in India, especially in India, where adequate infrastructure is as large as agriculture and land is a corporation and free of legal or social exclusion. But since today, this Indian farming industry has never had the fancy to suggest that one option would be to invite debate and debate without serious intention(25).

This comment points out that recognized technology can not universally apply to agriculture in India. It can be used appropriately as labor-intensive technology considering the types of crops and the economic ability of users, and the government's policy towards the climate conditions and agriculture in the region. It seems that Indian farmers cannot bless too many options and best options for the technology that Indian farmers can choose as it stands to be suitable for most requirements and constraints of this work. In short, the technology suitable for agriculture in India is technically indicated by EF Schumpeter as "intermediate technology" which is appropriate from the perspective of people in the world and enough to make the actual situation easy enough for people without higher education or without training to manage. Schumpeter's idea is to gather information on low-cost technologies that require affordable capital equipment using tools that are adaptable to the local conditions of input and marketing on a small scale and are cheap yet efficient and secure.

Conclusion

However, this type of technology is not available in water scarce areas. There is always coverage, with emphasis on suitability for different states depending on various factor proportions and national socio-economic priorities.

Reference


3. Rosegrant MW, Evenson RE. Total factor productivity and sources of long-term growth in Indian agriculture.


